bcroy Protocol Solutions Group

3385 Scott Blvd. Santa Clara, CA 95054 Tel: +1/408.727.6600 Fax: +1/408.727.6622

LeCroy PETracer

File Based Decoding

User Manud

Manual Version 1.20

18 February, 2005

CATC PETRACER FILE BASED DECODING USER MANUAL

Document Disclaimer

The information in this document has been carefully checked and is
believed to be reliable. However, no responsibility can be assumed for
inaccuracies that may not have been detected.

LeCroy reservestheright to revise theinformation in this document without
notice or penalty.

Trademarks and Servicemarks

CATC, PETracer, PETracer ML, PETracer EML, PETrainer EML,
PETrainer ML, UPAS, and BusEngine are trademarks of LeCroy.

Microsoft, Windows, Windows 2000, and Windows XP are registered
trademarks of Microsoft Inc.

All other trademarks are property of their respective companies.
Copyright
Copyright © 2005, LeCroy; All Rights Reserved.

This document may be printed and reproduced without additional
permission, but all copies should contain this copyright notice.

CATC PETRACER FILE BASED DECODING USER MANUAL

TABLE OF CONTENTS

Introduction---------------“-“-“-““““““----- - 1
Values - -----ccmcmmccm e e et ee e s 3
EXpressions - - ------------mm oo 7
Operators - ------=------ oo 9
Comments--------------------“--------------- - 17
Keywords - - - -----ccmcccmcccmm e e e cieee e e e 19
Statements- - - - - - ------ - 21
Preprocessing-----------------------“------------- 27
Context---------- - 29
PETracer Decoder Script Files - ---------------u--------- 31
FUnctions --------ccmcocmmcmmc e e ee e a e 37
Primitives - - - - --c-ccmmmcmi e e e e e e e e 39
Decoder Primitives-------------------cmommm oo 45
Modules - - ---------mm e o7

CATC PETRACER FILE BASED DECODING USER MANUAL

CATC PETRACER FILE BASED DECODING USER MANUAL

Introduction

CHAPTER 1. INTRODUCTION

CATC Scripting Language (CSL) was devel oped to create scripts that would allow
users to perform file-based decoding with CATC analyzers. CSL is used to edit
CATC Decode Scripting (CDS) files, which are pre-written decoder scripts supplied
by CATC. These script-based decoders can be modified by users or implemented
as-is. Additionally, users can create brand new CDSfiles. Thisdocument describes
the basics of CSL syntax and defines PETracer-specific contexts.

Decoding scripts for analyzers are located inthe/ scri pt s sub-directory below
the application directory. These scriptsaretoolsto decode and display transactions.
Users can also add entirely new, customized decoders to fit their own specific
development needs. PETracer looks in the \Scripts directory and automatically
loads al of the .dec files that it finds. To prevent a particular decoder from being
loaded, change its extension to something other than .dec or move it out of the
\Scripts directory.

CSL isbased on C language syntax, so anyone with a C programming background
will have no trouble learning CSL. The simple, yet powerful, structure of CSL also
enablesless experienced usersto easily acquire the basic knowledge needed to start
writing custom scripts.

Features of CATC Scripting Language

* Powerful -- provides ahigh-level APl while simultaneously allowing
implementation of complex algorithms.

* [Easy tolearn and use -- has a simple but effective syntax.

* Self-contained -- needs no external tools to run scripts.

* Widerange of value types-- provides efficient and easy processing of data.
® Used to create built-in script-based decoders for analyzers.

* May be used to write custom decoders.

* Genera purpose -- isintegrated in anumber of CATC products.

CATC PETRACER FILE BASED DECODING USER MANUAL

Introduction

LECROY PETRACER FILE BASED DECODING USER MANUAL

Values

CHAPTER 2: VALUES

There are five value types that may be manipulated by a script: integers, strings,
lists, raw bytes, and nul | . CSL isnot astrongly typed language. Va ue types need
not be pre-declared. Literals, variables and constants can take on any of the five
value types, and the types can be reassigned dynamically.

Literals

Literalsare data that remain unchanged when the program is compiled. Literasare
away of expressing hard-coded datain a script.

Integers

Integer literals represent numeric values with no fractions or decimal points. Hexa-
decimal, octal, decimal, and binary notation are supported:

Hexadecimal numbers must be preceded by Ox: 0x2A, 0x54, OxFFFFFFO1
Octal numbers must beginwith 0: 0775, 017, 0400

Decimal numbers are written asusual: 24, 1256, 2

Binary numbers are denoted with Ob: 0b01101100, 0b01, 0b100000

Strings

String literalsare used to represent text. A string consists of zero or more characters
and can include numbers, letters, spaces, and punctuation. An empty string (" ")
contains no characters and eval uatesto fal sein an expression, whereas anon-empty
string evaluates to true. Double quotes surround a string, and some standard
backslash (\) escape sequences are supported.

Sring Represented text

"Quote: \"This is a string Quote: "This is a string

literal . \"" literal."

" 256" 256 **Note that this does not represent the integer
256, but only the characters that make up the number.

"abcd! $9&*" abcd! $9&*

"June 26, 2001" June 26, 2001

"1, 2, 31" [1, 2, 3]

Table 2.1: Examples of String Literals

LECROY PETRACER FILE BASED DECODING USER MANUAL

Values

Escape Sequences
These are the available escape sequencesin CSL:

Escape
Character Sequence Example Output
backslash \\ "This is a backslash: \\" Thisisabackslash: \
double quote \ " "\"Quotes!\"" "Quotes!"
horizontal tab \t "Before tab\tAfter tab" Before tab After tab
newline \n "This is howwnto get a newine." Thisishow

to get anewline.

single quote \' "\'"Single quote\"" 'Single quote'

Table 2.2: Escape Sequences

Lists

A list can hold zero or more pieces of data. A list that contains zero pieces of data
iscalled an empty list. An empty list evaluates to false when used in an expression,
whereas a non-empty list evaluatesto true. List literals are expressed using the
square bracket ([]) delimiters. List elements can be of any type, including lists.

[1, 2, 3, 4]
[]

["one", 2, "three", [4, [5, [6]]]]
Raw Bytes

Raw binary values are used primarily for efficient access to packet payloads. A
literal notation is supported using single quotes:

' 001122334455667 78899 AABBCCDDEEFF

Thisrepresents an array of 16 byteswith values starting at 00 and ranging up to
OxFF. The values can only be hexadecimal digits. Each digit represents anybble
(four bits), and if there are not an even number of nybbles specified, animplicit zero
is added to the first byte. For example:

' FFF
isinterpreted as
' OFFF'

Null

Nul | indicates an absence of valid data. The keyword nul | representsaliteral
null value and evaluates to false when used in expressions.

LECROY PETRACER FILE BASED DECODING USER MANUAL

Values

result = null;

Variables

Variables are used to store information, or data, that can be modified. A variable
can be thought of as a container that holds a value.

All variables have names. Variable names must contain only al phanumeric charac-
ters and the underscore (_) character, and they cannot begin with anumber. Some
possible variable names are

X
_Newval ue
name_2

A variableiscreated whenit isassigned avalue. Variables can be of any valuetype,
and can change type with re-assignment. Values are assigned using the assignment
operator (=). The name of the variable goes on theleft side of the operator, and the
value goes on the right:

x =11, 2, 3]
New val ue = x
name2 = "Smth"

If avariableisreferenced beforeit isassigned avalue, it evaluates to null.

There are two types of variables: global and local.

Global Variables

Global variables are defined outside of the scope of functions. Defining global
variablesrequiresthe use of thekeyword set . Global variablesare visible through-
out afile (and al filesthat it includes).

set dobal = 10;

If an assignment in a function has a global as aleft-hand value, avariable will not
be created, but the global variable will be changed. For example

set dobal = 10;

Function()

{

d obal = "cat";
Local = 20;

LECROY PETRACER FILE BASED DECODING USER MANUAL

Values

will create alocal variable called Local , which will only be visible within the
function Funct i on. Additionaly, it will changethevalueof G obal to" cat ",
which will be visible to al functions. Thiswill also change its value type from an
integer to a string.

Local Variables

Local variables are not declared. Instead, they are created as needed. Local
variables are created either by being in afunction's parameter list, or smply by
being assigned a value in afunction body.

Funct i on(Par anet er)

{
}

Thisfunctionwill createalocal variable Par anet er and alocal variable Local |
which has an assigned value of 20.

Local = 20;

Constants

A constant is similar to a variable, except that its value cannot be changed. Like
variables, constant names must contain only alphanumeric characters and the un-
derscore (_) character, and they cannot begin with a number.

Constants are declared similarly to global variables using the keyword const :
const CONSTANT = 20;

They can be assigned to any value type, but will generate an error if used in the left-
hand side of an assignment statement later on. For instance,

const constant_2 = 3;

Function()

{
}

will generate an error.

constant _2 = 5;

Declaring aconstant with the same name asaglobal, or aglobal with the samename
as a constant, will also generate an error. Like globals, constants can only be
declared in the file scope.

LECROY PETRACER FILE BASED DECODING USER MANUAL

Expressions

CHAPTER 3: EXPRESSIONS

Anexpressionisastatement that calculatesaval ue. The simplest type of expression
is assignment:

X =2
Theexpressionx = 2 calculates 2 asthe value of x.

All expressions contain operators, which are described in Chapter 4, Operators, on
page 9. The operators indicate how an expression should be evaluated in order to
arrive at its value. For example

X + 2
saysto add 2 to x to find the value of the expression. Another exampleis
X > 2

which indicates that x is greater than 2. Thisis a Boolean expression, so it will
evauate to either true or false. Therefore, if x = 3,thenx > 2 will evaluate to
true; if x = 1, itwill returnfalse.

Trueis denoted by a non-zero integer (any integer except 0), and falseisazero
integer (0). True and false are also supported for lists (an empty list isfalse, while
all others are true), and strings (an empty string is false, while al others are true),
and nul | isconsidered false. However, all Boolean operators will result in integer
values.

sel ect expression

Thesel ect expression selects the value to which it evaluates based on Boolean
expressions. Thisisthe format for asel ect expression:

sel ect {
<expressionl> : <statenentl>
<expression2> : <statenent2>

o

The expressions are evaluated in order, and the statement that is associated with the
first true expression is executed. That value is what the entire expression evaluates
to.

LECROY PETRACER FILE BASED DECODING USER MANUAL

Expressions

x =10
Val ue_of _x = select {

X <5 : "Less than 5";

x >= 5 : "Geater than or equal to 5";
3

The above expression will evaluate to “ Greater than or equal to 5" because thefirst
trueexpressionisx >= 5. Notethat asemicolon isrequired at the end of a

sel ect expression becauseit isnot acompound statement and can be used in an
expression context.

Thereisalso akeyword def aul t , which in effect always evaluatesto true. An
example of itsuse is

Astring = select {
A==1: "one";
A==2: "tw",
A == 3. "three";

A>3 : "overflow';
default : null;

3
If none of thefirst four expressions evaluates to true, then def aul t will be eval-
uated, returning avalue of nul | for the entire expression.

sel ect expressions can also be used to conditionally execute statements, similar
to Cswi t ch statements:

sel ect {
A == 1 : DoSonething();
A == 2 : DoSonet hi ngEl se();

defaul t: DoNot hi ng():
}i

In this case the appropriate function is called depending on the value of A, but the
evaluated result of thesel ect expressionisignored.

LECROY PETRACER FILE BASED DECODING USER MANUAL

Operators

CHAPTER 4: OPERATORS

An operator isasymbol that represents an action, such as addition or subtraction,
that can be performed on data. Operators are used to manipulate data. The data
being manipulated are called operands. Literals, function calls, constants, and
variables can al serve as operands. For example, in the operation

X + 2

the variable x and the integer 2 are both operands, and + is the operator.

Operations

Operations can be performed on any combination of value types, but will result in
anull valueif the operation is not defined. Defined operations are listed in the
Operand Types column of Table 4.2 on page 12. Any binary operation on anull and
anon-null value will result in the non-null value. For example, if

X = null
then
3* X

will return avalue of 3.

A binary operation is an operation that contains an operand on each side of the
operator, as in the preceding examples. An operation with only one operand is
called aunary operation, and requires the use of aunary operator. An example of a
unary operation is

11
which uses the logical negation operator. It returns avalue of 0.

The unary operators are si zeof (), head(),tail (),~and!.

Operator Precedence and Associativity

Operator rulesof precedence and associativity determineinwhat order operandsare
evaluated in expressions. Expressions with operators of higher precedence are
evaluated first. In the expression

4 +9 * 5

the* operator hasthe highest precedence, so the multiplication is performed before
the addition. Therefore, the expression evaluates to 49.

LECROY PETRACER FILE BASED DECODING USER MANUAL

Operators

The associative operator () isused to group parts of the expression, forcing those
parts to be evaluated first. In thisway, the rules of precedence can be overridden.
For example,

(4+9) *5
causes the addition to be performed before the multiplication, resulting in avalue
of 65.

When operators of equal precedence occur in an expression, the operands are
evaluated according to the associativity of the operators. This means that if an op-
erator's associativity is left to right, then the operations will be done starting from
the left side of the expression. So, the expression

4+9-6+5

would evaluate to 12. However, if the associative operator is used to group apart or
parts of the expression, those parts are evaluated first. Therefore,

(4+9) - (6+5)
has avalue of 2.

In Table 4.1, Operator Precedence and Associativity, the operators are listed in
order of precedence, from highest to lowest. Operators on the same line have equal
precedence, and their associativity is shown in the second column.

Operator Symbol Associativity

++ -- Right to left

[] @) Left to right

~ ! si zeof head tail Right to left
* / % Left to right

+ - Left toright

<< >> Left toright

< > <= >= Left to right

== | = Left toright
& Left to right

N Left to right

[Left to right

&& Left to right

[] Left to right

Table 4.1: Operator Precedence and Associativity

10

LECROY PETRACER FILE BASED DECODING USER MANUAL

Operators
Operator Symbol Associativity
= += -= *= /| = V= >>= <<= &= Right to left

Table 4.1: Operator Precedence and Associativity (Continued)

11

LECROY PETRACER FILE BASED DECODING USER MANUAL

Operators

Index Operator
[] Index or Raw Bytes Integer Raw = ' 001122’
subscript Rawf 1] = 0Ox11
List Any List = [0, 1, 2, 3, [4, 5]]
List[2] =2
List[4] = [4, 5]
List[4][1] =5
*Note: if an indexed Raw value is assigned to any
vauethat isnot abyte (> 255 or not an integer), the
variable will be promoted to alist before the
assignment is performed.
Associative Oper ator
() Associative Any Any (2+4) * 3 =18
2+ (4*3) =14
Arithmetic Operators
* Multiplication Integer-integer Integer 3*1=3
/ Division Integer-integer Integer 3/ 1=3
% Modulus Integer-integer Integer 3%1 =0
+ Addition Integer-integer Integer 2+2=4
String-string String "one " + "two" = "one two"
Raw byte-raw byte | Raw '001122" + '334455' =
' 001122334455’
List-list List [1, 2] +[3, 4 =11, 2, 3, 4]
Integer-list List 1+[2 3 =11, 2, 3]
Integer-string String "nunber =" + 2 = "nunber = 2"
*Note: integer-string concatenation uses decimal
conversion.
String-list List "one" + ["two"] = ["one", "two"]
- Subtraction Integer-integer Integer 3-1=2
Increment and Decrement Oper ators
++ Increment Integer Integer a=1
++a = 2
b=1
b++=1
*Note that the value of b after execution is 2.
-- Decrement Integer Integer a =2
--a =1
b =2
b-- =2

*Note that the value of b after executionis 1.

Table 4.2: Operators

12

LECROY PETRACER FILE BASED DECODING USER MANUAL

Operators

Equality Operators

== Equal Integer-integer Integer 2 ==
String-string Integer "three" == "three"
Raw byte-raw byte [Integer '001122' == '001122'
List-list Integer | [1, [2, 3]] ==1[1, [2, 3]]
*Note: equality operations on values of different
types will evaluate to false.
I= Not equal Integer-integer Integer 21=3
String-string Integer "three" !'= "four"
Raw byte-raw byte | Integer ' 001122' !'= ' 334455
List-list Integer | [1, [2, 3]] !'=1[1, [2, 4]]
*Note: equality operations on values of different
types will evaluate to false.
Relational Operators
< Lessthan Integer-integer Integer 1 <2
String-string Integer "abc" < "def"
> Greater than Integer-integer Integer 2>1
String-string Integer "xyz" > "abc"
<= Less than or Integer-integer Integer 23 <= 27
equal String-string Integer "cat" <= "dog"
>= Greater thanor | Integer-integer Integer 2 >=1
equal String-string Integer "sun" >= "nmoon"
*Note: relational operations on string values are
evaluated according to character order in the ASCI|
table.
Logical Operators
! Negation All combinations Integer 10 =1 I"cat" =0
of types 19=0 I" =1
&& Logical AND All combinations | Integer 1&& 1 =1 18&!"" =1
of types 1& 0 =0 1&& "cat" =1
| Logical OR All combinations | Integer 1]] 1=1 0]] 0=0
of types 1] 0=121 "" || !"cat" =0

Table 4.2: Operators (Continued)

13

LECROY PETRACER FILE BASED DECODING USER MANUAL

Operators

Bitwise L ogical Operators
~ Bitwise Integer-integer Integer ~0b11111110 = 0b00000001
complement
& Bitwise AND I nteger-integer Integer | Ob11111110 & 0b01010101 =
0b01010100
N Bitwise Integer-integer Integer 0b11111110 ~ 0b01010101 =
exclusive OR 0b10101011
| Bitwise Integer-integer Integer 0b11111110 | 0b01010101 =
inclusive OR 0b11111111
Shift Operators
<< Left shift Integer-integer Integer 0b11111110 << 3 = 0b11110000
>> Right shift Integer-integer Integer 0b11111110 >> 1 = 0b01111111
Assignment Operators
= Assignment Any Any A=1
B=C=A
+= Addition Integer-integer Integer | x =1
assignment X +=1 =2
String-string String a = "one "
a += "two" = "one two"
Raw byte-raw byte| Raw z = '001122'
z += '334455' = '001122334455'
List-list List x =[1, 2]
x +=[3, 4 =[1, 2, 3, 4]
Integer-list List y =1
y +=[2, 3] =[1, 2, 3]
Integer-string String a = "nunber ="
a += 2 = "nunber = 2"
*Note: integer-string concatenation uses decimal
conversion.
String-list List s = "one"
s + ["two"] = ["one", "two"]
-= Subtraction Integer-integer Integer y =3
assignment y —=1=2
*= Multiplication Integer-integer Integer | x = 3
assignment x *= 1 =3
/= Division Integer-integer Integer =3
assignment s/=1=3
% Modulus Integer-integer Integer y =3
assignment y % 1=0
>>= Right shift Integer-integer Integer b = 0b11111110
assignment b >>= 1 = 0b01111111
<<= Left shift Integer-integer Integer a = 0bl1111110
assignment a <<= 3 = 0b11111110000

Table 4.2: Operators (Continued)

14

LECROY PETRACER FILE BASED DECODING USER MANUAL

Operators

Assignment Operator s (continued)
&= Bitwise AND Integer-integer Integer a = 0bl1111110
assignment a &= 0b01010101 = 0b01010100
A= Bitwise Integer-integer Integer e = 0bl1111110
exclusive OR e = 0b01010101 = 0b10101011
assignment
= Bitwise Integer-integer Integer i = 0bll111110
inclusive OR i |= 0b01010101 = 0b11111111
assignment
List Operators
si zeof () | Number of Any Integer sizeof ([1, 2, 3]) =3
elements si zeof (' 0011223344') =5
sizeof ("string") =6
sizeof (12) =1
sizeof ([1, [2, 3]]) =2
*Note: the last example demonstrates that the
si zeof () operator returns the shallow count of a
complex list.
head() Head List Any head([1, 2, 3]) =1
*Note: the Head of alist isthe first item in the list.
tail () Tail List List tail([1, 2, 3]) =1[2, 3]
*Note: the Tail of alist includes everything except
the Head.

Table 4.2: Operators (Continued)

15

LECROY PETRACER FILE BASED DECODING USER MANUAL

Operators

16

LECROY PETRACER FILE BASED DECODING USER MANUAL

Comments

CHAPTER 5: COMMENTS

Comments may be inserted into scripts as a way of documenting what the script
does and how it does it. Comments are useful as away to help others understand
how a particular script works. Additionally, comments can be used as an aid in
structuring the program.

Commentsin CSL begin with ahash mark (#) and finish at the end of theline. The
end of thelineisindicated by pressing the Return or Enter key. Anything contained
insde the comment delimitersisignored by the compiler. Thus,

x = 2;

isnot considered part of the program. CSL supports only end-of-line comments,
which means that comments can be used only at the end of aline or on their own
line. It's not possible to place acomment in the middle of aline.

Writing a multi-line comment requires surrounding each line with the comment de-
limiters
otherwi se the conpiler would try to interpret

anything outside of the delimters
as part of the code.

The most common use of commentsisto explain the purpose of the code immedi-
ately following the comment. For example:

Add a profile if we got a server channel
if(rfChannel '= "Failure")

{

result = SDPAddProfil eServi ceRecord(rf Channel,
" (bj ect Push");

Trace(" SDPAddProfi | eServi ceRecord returned ",
result, "\n");

}

17

LECROY PETRACER FILE BASED DECODING USER MANUAL

Comments

18

LECROY PETRACER FILE BASED DECODING USER MANUAL

CHAPTER 6: KEYWORDS

Keywords

Keywordsarereserved wordsthat have specia meaningswithin thelanguage. They

cannot be used as names for variables, constants or functions.

In addition to the operators, the following are keywordsin CSL:

Keyword Usage
sel ect sel ect expression
set defineaglobal variable
const define a constant
return r et ur n statement
whil e whi | e statement
f or f or statement
i f i f statement
el se i f-el se statement
def aul t sel ect expression
nul | null value
in input context
out output context
Table 6.1: Keywords

19

LECROY PETRACER FILE BASED DECODING USER MANUAL

Keywords

20

LECROY PETRACER FILE BASED DECODING USER MANUAL

Satements

CHAPTER 7. STATEMENTS

Statements are the building blocks of a program. A program is made up of list of
Statements.

Seven kinds of statements are used in CSL: expression statements, if statements, if-
el se statements, while statements, for statements, return statements, and compound
statements.

Expression Statements

An expression statement describes avalue, variable, or function.
<expr essi on>
Here are some examples of the different kinds of expression statements:

Val ue: x + 3;
Variable: x = 3;
Function: Trace (X + 3);

The variable expression statement is also called an assignment statement, because
it assignsavalueto avariable.

| f Statements

Ani f statement follows the form

i f <expression> <statenent>
For example,

if (3 & 3) Trace("True!");

will cause the program to evaluate whether the expression 3 && 3 is nonzero, or
True. It is, so the expression evaluates to True and the Tr ace statement will be
executed. On the other hand, the expression 3 && 0 is not nonzero, so it would
evaluate to False, and the statement wouldn't be executed.

| f - el se Statements

Theformfor ani f - el se statement is

i f <expression> <statenentl1l>
el se <st atenent 2>

The following code

21

LECROY PETRACER FILE BASED DECODING USER MANUAL

Statements
if (3-3]||] 2- 2) Trace ("Yes");
el se Trace ("No");
will cause “No” to be printed, because3 - 3 || 2 - 2 will evauateto False

(neither 3 - 3 nor2 - 2isnonzero).

whi | e Statements

A whi | e statement iswritten as

whi | e <expressi on> <st at enent >
An example of thisis

X = 2;

while (x < 5)

{
II, n) ;

Trace (X,
X =x + 1;

}

The result of thiswould be
2, 3, 4,

f or Statements

A f or statement takes theform

for (<expressionl>, <expression2>; <expression3>)
<st at enent >

Thefirst expression initializes, or sets, the starting value for x. It is executed one
time, before the loop begins. The second expression is aconditional expression. It
determines whether the loop will continue -- if it evaluates true, the function keeps
executing and proceeds to the statement; if it evaluates false, the loop ends. The
third expression is executed after every iteration of the statement.

——————————™ False ———» End

exprassionT | —m | expression? | ———m True ———W | statement
! v

expression

Figure 7-1: Executionof af or statement

22

LECROY PETRACER FILE BASED DECODING USER MANUAL

Satements

The example
for (x =2;, x <5, x=x+1) Trace (x, "\n");
would output

2
3
4

The example above works out like this: the expression x = 2 isexecuted. The
valueof xispassedtox < 5, resultingin2 < 5. Thisevaluatesto true, so the
statement Trace (x, "\ n") isperformed, causing 2 and a new lineto print.
Next, the third expression is executed, and the value of x isincreased to 3. Now,

X < 5isexecuted again, and isagain true, so the Tr ace statement is executed,
causing 3 and anew lineto print. The third expression increases the value of x to 4;
4 < 5istrue, so 4 and anew line are printed by the Tr ace statement. Next, the
value of xincreasesto 5.5 < 5 isnot true, so the loop ends.

r et ur n Statements

Every function returnsavalue, whichisusually designated inar et ur n statement.
Ar et ur n statement returnsthe value of an expression to the calling environment.
It uses the following form:

return <expression>,;
An example of ar et ur n statement and its calling environment is
Trace (H There());
H There()
{
}

The call to the primitive function Tr ace causes the function Hi Ther e() to be
executed. Hi Ther e() returnsthe string “Hi there” asitsvalue. Thisvalueis
passed to the calling environment (Tr ace), resulting in this output:

H there

return "H there";

A r et ur n statement also causes afunction to stop executing. Any statements that
come after the r et ur n statement are ignored, becauser et ur n transfers control
of the program back to the calling environment. As aresult,

23

LECROY PETRACER FILE BASED DECODING USER MANUAL

Satements

Trace (Hi There());

H There()

{
a="H there";
return a;
b = "Goodbye";
return b;

}

will output only
H there

becausewhenr et ur n a; isencountered, execution of the function terminates,
and the second return statement (r et ur n b;) isnever processed. However,

Trace (Hi There());

H| ;I'her e()

{
a="H there";
b = "Goodbye";

if (3!=3) return a;
el se return b;

}

will output
Goodbye

becausethei f statement evaluatestofalse. Thiscausesthefirstr et ur n statement
to be skipped. The function continues executing with the el se statement, thereby
returning the value of b to be used as an argument to Tr ace.

Compound Statements

A compound statement, or statement block, is a group of one or more statements

that istreated as a single statement. A compound statement is always enclosed in
curly braces ({}). Each statement within the curly bracesisfollowed by a semi-
colon; however, a semicolon is not used following the closing curly brace.

The syntax for acompound statement is

{

<first_statenent>;
<second_st at enent >;

24

LECROY PETRACER FILE BASED DECODING USER MANUAL

Satements

<l ast _st at enent >;

}

An example of a compound statement is

Compound statements can be used anywhere that any other kind of statement can
be used.

if (3 & 3)

{
result = "True!l";
Trace(result);

}

Compound statements are required for function declarations and are commonly
usedini f,if-el se,whil e, andf or statements.

25

LECROY PETRACER FILE BASED DECODING USER MANUAL

Satements

26

LECROY PETRACER FILE BASED DECODING USER MANUAL

Preprocessing

CHAPTER 8: PREPROCESSING

The preprocessing command % ncl ude can be used to insert the contents of afile
into a script. It has the effect of copying and pasting the file into the code. Using
% ncl ude allowsthe user to create modular script files that can then be incorpo-
rated into a script. This way, commands can easily be located and reused.

The syntax for % ncl ude isthis:
% ncl ude “includefile.inc”

The quotation marks around the filename are required, and by convention, the
included filehasa. i nc extension.

The filenames given in the include directive are always treated as being relative to
the current file being parsed. So, if afileisreferenced viathe preprocessing
command in a.dec file, and no path information is provided (% ncl ude
“file.inc”),theapplicationwill try toload thefile from the current directory.
Filesthat arein adirectory onelevel up fromthe current file can bereferenced using
“..\file.inc”,andlikewise filesonelevel down can bereferenced using the
relative pathname (“ di rect ory\fil e. i nc”). Last but notleast, filescan also
be referred to using afull pathname, such as

“C:\global _scripts\include\file.inc”.

27

LECROY PETRACER FILE BASED DECODING USER MANUAL

Preprocessing

28

LECROY PETRACER FILE BASED DECODING USER MANUAL

Context

CHAPTER 9: CONTEXT

The context is the mechanism by which transaction datais passed in and out of the
scripts. Thereisan output context that is modified by the script, and there are
possibly multiple input contexts that the script will be invoked on separately.

A context servestwo roles: firstly, it functions as a symbol table whose values are
local to a particular transaction; secondly, it functions as an interface to the appli-
cation. Two keywords are used to reference symbolsin the context: i n and out .
Dot notation is used to specify a symbol within a context:

out . synmbol = "abcd";
out.type = in.type;

Theoutput context can beread and written to, but theinput context can only beread.
Context symbols follow the same rules as local variables. they are created on
demand, and uninitialized symbols always evaluate to null.

When a script isfirst invoked, it is given an input context that correspondsto a
packet or transaction that isa candidate for being a part of alarger transaction. The
output context isinitially empty. It isthe script's job to examine the input context
and decideif it qualifies for membership in the type of transaction that the script
was designed to decode. If it qualifies, the appropriate values will be decoded and
put in the output context symbol table, and if the transaction is complete, it will be
done. If the transaction is not complete, the script will indicate this to the applica-
tion based on its return value, and will be invoked again with the same output
context, but a new input context. The script then must decide if this new input
context is amember of the transaction, and keep doing this until the transaction is
complete.

In order to accomplish al this, state information should be placed in the output
context. It should be possible to use the output context of one transaction as an
input context to another transaction.

29

LECROY PETRACER FILE BASED DECODING USER MANUAL

Context

30

LECROY PETRACER FILE BASED DECODING USER MANUAL

PETracer Decoder Script Files

CHAPTER 10: PETRACER
DECODER SCRIPT FILES

PETracer includes the four script filesin the \Scripts directory. Thesefiles can be
modified or used asis.

To activate ascript file, goto thelast linein thefile (for example, inio.dec, theline
reads. “set OutputType="__10") and remove the underscore. For example:

set OutputType="__10"
Changeto:
set OutputType ="10"

Decoder Script Files

The four decoder script files and their functions are as follows:

Decoder Script File Function

cfg.dec Configuration data script decoder.

io.dec | O data script decoder.

mem.dec Memory data script decoder.

msg.dec M essage data script decoder.
Cfg.dec

Description: Cfg.dec isaconfiguration data script decoder.

Input Data Fields

in.Data - data block to decode

in.Datal_ength length of data block in bytes

in.PrepareFldsForDlg - if not 0 means that script should prepare decoded
fields for presenting them in a special dialog.

in.Type - request type (_ TLP_TYPE_ID_CFGRD _0,

_TLP TYPE_ID_CFGRD 1,
_TLP TYPE_ID_CFGWR_Oor
“TLP TYPE_ID_CFGWR 1)

31

LECROY PETRACER FILE BASED DECODING USER MANUAL

PETracer Decoder Script Files

in.FirstByteEnabled - index of first enabled byte in data block
in.EnabledByteCount - number of enabled bytesin data block
in.DevicelD - devicelD

in.Register - configuration space address

inTC - TC (Traffic class) field of TLP header
in.Tag - Tag field of TLP header

in.RequesterI D - RequesterID field of TLP header

in.Attr - Attr field of TLP header

in.Length - Length field of TLP header

in.TD - TD (Transport Digest) field of TLP header
in.EP - EP (End-to-end Poisoning) field of TLP header
Output Data Fields

out.Decoded - amount of data (in bytes) has been decoded
lo.dec

Description: lo.decisan 1O data script decoder.

Input Data Fields

in.Data - data block to decode
in.Datal_ength - length of data block in bytes

in.PrepareFldsForDlg - if not 0 meansthat script should prepare decoded fields
for presenting them in a special dialog.

in.Type - request type (_ TLP_TYPE_ID_IORD or
_TLP_TYPE_ID_IOWR)
in.FirstByteEnabled - index of first enabled byte in data block
in.EnabledByteCount - number of enabled bytesin data block
in.Address - address
inTC - TC (Traffic class) field of TLP header
in.Tag - Tag field of TLP header
in.RequesterI D - RequesterID field of TLP header
in.Attr - Attr field of TLP header

in.Length - Length field of TLP header

32

LECROY PETRACER FILE BASED DECODING USER MANUAL

PETracer Decoder Script Files

in.TD - TD (Transport Digest) field of TLP header
in.EP - EP (End-to-end Poisoning) field of TLP header
Output Data Fields

out.Decoded - amount of data (in bytes) has been decoded

set OutputType =" 1O"; # remove __ to use the script

Mem.dec

Description: Mem.dec isamemory data script decoder.

Input Data Fields

in.Data - data block to decode
in.Datalength - length of data block in bytes

in.PrepareFldsForDlIg - if not 0 means that script should prepare decoded fieldsfor
presenting them in a special dialog.

in.Type - request type (_ TLP_TYPE_ID_MRD32,
_TLP_TYPE_ID_MRDLK32,
_TLP_TYPE_ID_MWR32, TLP TYPE_ID_MRD64,
_TLP_TYPE_ID_MRDLK®4 or
_TLP_TYPE_ID_MWR®4)

in.FirstByteEnabled - index of first enabled byte in data block

in.EnabledByteCount - number of enabled bytes in data block

in.AddressLo - address[31:0]

in.AddressHi - addresg[63:32] (only for _TLP_TYPE_ID_MRD64,
_TLP_TYPE_ID_MRDLK®64 or
_TLP_TYPE_ID_MWR®4)

inTC - TC (Traffic class) field of TLP header
in.Tag - Tag field of TLP header
in.RequesterI D - RequesterID field of TLP header
in.Attr - Attr field of TLP header

in.Length - Length field of TLP header

in.TD - TD (Transport Digest) field of TLP header

33

LECROY PETRACER FILE BASED DECODING USER MANUAL

PETracer Decoder Script Files

in.EP - EP (End-to-end Poisoning) field of TLP header
Output Data Fields

out.Decoded - amount of data (in bytes) has been decoded
Msg.dec

Description: Msg.dec is a message data script decoder.

Input Data Fields

in.Data - data block to decode
in.Datal_ength - length of data block in bytes

in.PrepareFldsForDlIg - if not 0 meansthat script should prepare decoded fields for
presenting them in a special dialog.

in.Type - request type (_TLP_TYPE_ID_IORD or
_TLP_TYPE_ID_IOWR)

in.FirstByteEnabled - index of first enabled byte in data block
in.EnabledByteCount - number of enabled bytesin data block

in.MessageCode - message code

(_TLP_MSGCODE_ASSERT INTA
_TLP_MSGCODE_ASSERT_INTB
_TLP_MSGCODE_ASSERT_INTC
_TLP_MSGCODE_ASSERT_INTD
_TLP_MSGCODE_DEASSERT_INTA
_TLP_MSGCODE_DEASSERT_INTB
_TLP_MSGCODE_DEASSERT_INTC
_TLP_MSGCODE_DEASSERT_INTD
_TLP_MSGCODE_PM_ACTIVESTATENAK
_TLP_MSGCODE_PM_PME
_TLP_MSGCODE_PM_TURNOFF
_TLP_MSGCODE_PM_TOACK
_TLP_MSGCODE_ERR_COR
_TLP_MSGCODE_ERR _NONFATAL
_TLP_MSGCODE_ERR_FATAL
_TLP_MSGCODE_UNLOCK
_TLP_MSGCODE_SLOTPOWERLIMIT
_TLP_MSGCODE_VENDORO
_TLP_MSGCODE_VENDOR1
_TLP_MSGCODE_HP_ATTN_IND_ON

LECROY PETRACER FILE BASED DECODING USER MANUAL

PETracer Decoder Script Files

_TLP_MSGCODE_HP_ATTN_IND_BLINK
_TLP_MSGCODE_HP_ATTN_IND_OFF
_TLP_MSGCODE_HP_POWER_IND_ON
_TLP_MSGCODE_HP_POWER_IND_BLINK
_TLP_MSGCODE_HP_POWER_IND_OFF
_TLP_MSGCODE_HP_ATTN_BTN_PRESSED)
in.MessageRouting - message routing
(_TLP_MSGROUTE_TOROOTCOMPLEX,
_TLP_MSGROUTE_BYADDRESS,
_TLP_MSGROUTE_BYID,
_TLP_MSGROUTE_FROMROOTCOMPLEX,
_TLP_MSGROUTE_LOCALTERMRECEIVER,
_TLP_MSGROUTE_GATHERTOROOTCOMPLEX,
_TLP_MSGROUTE_RESERVEDITERMRECEIVER or
_TLP_MSGROUTE_RESERVED2TERMRECEIVER)

in.AddressLo - address [31:00] (if MessageRouting is
_TLP_MSGROUTE_BYADDRESS)

in.AddressHi - address [63:32] (if MessageRouting is
_TLP_MSGROUTE_BYADDRESS)

in.DevicelD - device ID (if MessageRouting is
_TLP_MSGROUTE_BYID)

inTC - TC (Traffic class) field of TLP header

in.Tag - Tag field of TLP header

in.RequesterI D - RequesterID field of TLP header

in.Attr - Attr field of TLP header

in.Length - Length field of TLP header

in.TD - TD (Transport Digest) field of TLP header

in.EP - EP (End-to-end Poisoning) field of TLP header

Output Data Fields
out.Decoded - amount of data (in bytes) has been decoded

35

LECROY PETRACER FILE BASED DECODING USER MANUAL

PETracer Decoder Script Files

36

LECROY PETRACER FILE BASED DECODING USER MANUAL

Functions

CHAPTER 11: FUNCTIONS

A function is a named statement or a group of statements that are executed as one
unit. All functions have names. Function names must contain only alphanumeric
characters and the underscore (_) character, and they cannot begin with a number.

A function can have zero or more parameters, which are values that are passed to
the function statement(s). Parameters are also known as arguments. Value types are
not specified for the arguments or return values. Named arguments are local to the
function body, and functions can be called recursively.

The syntax for afunction declaration is
name(<paraneter 1> <paraneter2>, ...)

{
}

The syntax to call afunction is

<st at enent s>

name(<paraneter 1> <paraneter2>, ...)
So, for example, afunction named add can be declared like this:

add(x, vy)
{

}
and called thisway:

add(5, 6);

Thiswould result in areturn value of 11.

return x + vy;

Every function returns avalue. The return value is usually specified using a
r et ur n statement, but if no r et ur n statement is specified, the return value will
be the value of the last statement executed.

Arguments are not checked for appropriate value types or number of arguments
when afunction iscalled. If afunction is called with fewer arguments than were
defined, the specified arguments are assigned, and the remaining arguments are
assigned to null. If afunction is called with more arguments than were defined, the
extra arguments are ignored. For example, if the function add is called with just
one argument

add(1);

37

LECROY PETRACER FILE BASED DECODING USER MANUAL

Functions

the parameter x will be assigned to 1, and the parameter y will be assigned to null,
resulting in areturn value of 1. But if add is called with more than two arguments

add(1, 2, 3);
x will beassignedto 1, y to 2, and 3 will beignored, resulting in areturn value of 3.

All parameters are passed by value, not by reference, and can be changed in the
function body without affecting the values that were passed in. For instance, the
function

add_1(x, vy)
{
X = 2;
y = 3;
return x + vy;
}
reassigns parameter values within the statements. So,
a = 10;
b = 20;
add _1(a, b);

will have areturn value of 5, but the values of aand b won't be changed.

The scope of afunction isthefilein whichit is defined (as well as included files),
with the exception of primitive functions, whose scopes are global.

Callsto undefined functions are legal, but will always evaluate to null and result in
a compiler warning.

38

LECROY PETRACER FILE BASED DECODING USER MANUAL

Primitives

CHAPTER 12: PRIMITIVES

Primitive functions are called smilarly to regular functions, but they are imple-
mented outside of the language. Some primitives support multiple typesfor certain
arguments, but in general, if an argument of thewrong typeis supplied, the function
will return null.

Cal | ()

Call (<function_nanme string> <arg_list list>)

Par ameter Meaning Default Value Comments

function_name string

arg_listlist Used asthe list of parametersin the function call.

Return value
Same as that of the function that is called.

Comments

Callsafunction whose name matchesthef unct i on_nane parameter. All scope
rulesapply normally. Spacesinthef unct i on_name parameter areinterpreted as
the' ’ (underscore) character since function names cannot contain spaces.

Example
Call ("Format", ["the nunber is %", 10]);

isequivalent to:
Format ("t he nunber is %", 10);

For mat ()

Format (<format string> <value string or integer>)
Par ameter Meaning Default Value Comments
format string

value string or integer

Return value
None.

39

LECROY PETRACER FILE BASED DECODING USER MANUAL

Primitives

Comments

For mat isused to control the way that argumentswill print out. The format string
may contain conversion specifications that affect the way in which the arguments
in the value string are returned. Format conversion characters, flag characters, and
field width modifiers are used to define the conversion specifications.

Example
For mat (" 0Ox%®©2X", 20);

would yield the string 0x14.
For mat can only handle one value at atime, so
Format ("% %", 20, 30);
would not work properly. Furthermore, types that do not match what is specified in
the format string will yield unpredictable results.

Format Conversion Characters
These are the format conversion characters used in CSL:

Code Type Output
c Integer Character
d Integer Signed decimal integer.
i Integer Signed decimal integer
o} Integer Unsigned octal integer
u Integer Unsigned decimal integer
X Integer Unsigned hexadecimal integer, using "abcdef."
X Integer Unsigned hexadecimal integer, using "ABCDEF."
S String String

Table 12.1: Format Conversion Characters

A conversion specification begins with a percent sign (%) and ends with a conver-
sion character. The following optional items can be included, in order, between the
% and the conversion character to further control argument formatting:

® Flag characters are used to further specify the formatting. There are five flag characters:

A minussign (-) will cause an argument to be left-aligned in its field. Without the
minus sign, the default position of the argument is right-aligned.

« Aplussignwill insert aplussign (+) before apositive signed integer. Thisonly works
with the conversion charactersd and i .

40

LECROY PETRACER FILE BASED DECODING USER MANUAL

Primitives

» A space will insert a space before a positive signed integer. This only works with the
conversion charactersd and i . If both a space and a plus sign are used, the space flag
will beignored.

« A hash mark (#) will prepend a0 to an octal number when used with the conversion
character O. If # isused with X or X, it will prepend OX or OX to a hexadecimal
number.

« A zero (0) will pad the field with zeros instead of with spaces.

® Field width specification is a positive integer that defines the field width, in spaces, of the
converted argument. If the number of charactersin the argument is smaller than the field
width, then the field is padded with spaces. If the argument has more characters than the
field width has spaces, then the field will expand to accommodate the argument.

Get NBi t s()

GetNBits (<bit_source list or raw>, <bit_offset
i nteger>, <bit_count integer>)

Par ameter M eaning Default Value Comments
bit_source list, raw, or Can be aninteger value (4 bytes) or alist of inte-
integer gersthat are interpreted as bytes.
bit_offset integer Index of bit to
start reading
from
bit_count integer Number of
bitsto read
Return value
None.
Comments

Readsbi t _count bitsfrombi t _sour ce starting at bi t _of f set . Will
return null if bi t _of f set +bit_count exceedsthe number of bitsin
bit_source.Ifbit_count is32or less, the result will be returned as an
integer. Otherwise, the result will bereturned in alist format that is the same asthe
input format. Get NBi t s also setsup the bit data source and global bit offset used
by Next NBi t s and PeekNBi t s. Note that bits are indexed starting at bit O.

Example
raw = ' FOFO' ; # 1111000011110000 bi nary
result = GetNBits (raw, 2, 4);
Trace ("result =", result);

The output would be

41

LECROY PETRACER FILE BASED DECODING USER MANUAL

Primitives

result = C # The result is given in
hexadeci mal . The result in binary is 1100.

Inthecall toGet NBi t s: starting at bit 2, reads 4 bits (1100), and returnsthe value
OxC.

Next NBi t s()

Next NBits (<bit_count integer>)

Par ameter Meaning Default Value Comments

bit_count integer

Return value
None.

Comments

Readsbi t _count bitsfrom the data source specified in the last call to

Get NBi t s, starting after the last bit that the previous call to Get NBi t s or
Next NBi t s returned. If called without apreviouscall to Get NBi t s, theresultis
undefined. Note that bits are indexed starting at bit O.

Example

raw = ' FOFO' ; # 1111000011110000 bi nary
resultl GetNBits (raw, 2, 4);

result?2 Next NBi t s(5);
result3 Next NBi t s(2);

Trace ("resultl =", resultl,
result3 =", result3);

result2 =", result?2,

Thiswill generate this trace output:
resultl = Cresult2 =7 result3 = 2

Inthecall toGet NBi t s: starting at bit 2, reads 4 bits (1100), and returnsthe value
OxC.

Inthefirst call to Next NBi t s: starting at bit 6, reads 5 bits (00111), and returns
the value 0x7.

In the second call to Next NBi t s: starting at bit 11 (=6 + 5), reads 2 bits (10),
and returns the value Ox2.

42

LECROY PETRACER FILE BASED DECODING USER MANUAL

Primitives

Resol ve()

Resol ve(<synbol _nane string>)

Par ameter Meaning Default Value Comments

symbol_name string

Return value
The value of the symbol. Returns null if the symbol is not found.

Comments

Attemptsto resolve the value of asymbol. Can resolve global, constant and local
symbols. Spacesinthesynbol _nane parameter are interpreted asthe‘ ’ (un-
derscore) character since symbol names cannot contain spaces.

Example
a = Resol ve("synbol");

isequivalent to:

a = synbol ;

Trace()

Trace(<argl any>, <arg2 any>, ...)

Par ameter Meaning Default Value Comments

arg any The number of argumentsis variable.

Return value
None.

Comments
The values given to this function are given to the debug console.

Example
list = ["cat", "dog", "cow'];
Trace("List =", list, "\n");

would result in the output

List = [cat, dog, cow

LECROY PETRACER FILE BASED DECODING USER MANUAL

Primitives

LECROY PETRACER FILE BASED DECODING USER MANUAL

Decoder Primitives

CHAPTER 13: DECODER
PRIMITIVES

Abort ()
Abort ()

Par ameter Meaning Default Value Comments

N/A

Return value
An integer that should be passed back to the application unchanged.

Comments

Called when an input context renders the currently pending transaction done, but is
not itself amember of that transaction. An example would be an input transaction
that represents some sort of reset condition that renders all pending transactions
invalid. Theinput transaction is not consumed by this action and will go on to be
considered for other pending transactions.

Example

if (IsReset)
return Abort();

AddCel | ()

AddCel | (<nane string>, <value string>, <description
string or null>, <color integer or list>,
<addi tional _i nfo any>)

Par ameter Meaning Default Value Comments
name string Displaysin the namefield of the cell.
value string Displaysin the value field of the cell.
description string or null Displaysintool tip.
color integer or list If not speci- Color can be specified as either a packed color

fied, adefault valuein an integer, or as an array of RGB values
colorisused ranging from 0-255. Displaysin the namefield
of the cell.

LECROY PETRACER FILE BASED DECODING USER MANUAL

Decoder Primitives

Par ameter Meaning Default Value Comments

additiona_info any Used to create specia cells or to modify cell
attributes. The values are predefined constants,
and zero or more of them may be used at one
time. Possible values are:
_COLLAPSED
_ERROR
_ EXPANDED
[_FI XEDW DTH, w]
_HI DDEN
_MONOCOLOR
_MONCFI ELD
_SHOWN (defaul t)
_WARNI NG

Return value
None.

Comments

Adds adisplay cell to the current output context. Cells are displayed in the order
that they are added. The name and value strings are displayed directly in the cell.

Example
Create a regular cell naned Normal with a val ue
"Cell"™ and tool tip "Normal cell":
AddCel I ("Normal ", "Valuel”, "Normal cell");

Use the MONOCOLOR value in the additional info
paraneter to create a cell with a col or val ue of
0x881122 in both the nane and val ue fi el ds:

AddCel | ("MonoCol or", "Val ue2", "MnoCol or cell™",
0x881122, —MONOCOLOR);

Use the _MONOFI ELD value to create a cell with only
a nane field:

AddCel | ("MonoFi el d", "Val ue3", "MnoField cell™",
[255, 200, 200], _MONOFIELD);

Use the _ERROR value to create a cell wth a red
val ue field:

AddCel | ("Error", "Value4", "Error cell", 0Oxccll55,
_ERROR) ;

Use the WARNINGvalue to create acell wth a yell ow
val ue field:

46

LECROY PETRACER FILE BASED DECODING USER MANUAL

Decoder Primitives

AddCel | ("Warni ng", "Value5", "Warning cell",
0x00BB22, _WARNI NG);

Use the [_FI XEDWDTH, w] value to create a cell with
afixed width of 20 in conjuction with the error val ue
to create a fixed wwdth cell with a red value field:

AddCel | ("Fi xed Wdth 20", "Val ue6", "Fi xed Wdth and
Error cell", 0x001122, [_FI XEDW DTH, 20], _ERROR);

The output of the exampleis:

Marmal ManoCalar Error WWarnind Fixed Width 20

value? e Values valueh

Figure 13-1: Example output for AddCel |

AddDat aCel | ()

AddDat aCel | (<data_val ue raw, list or integer>,
<addi tional _info any>, ...)
Par ameter Meaning Default Value Comments
data valueraw, list, or Interpreted the same way as Get NBi t s inter-
integer pretsdat a_sour ce
additional_info any Used to create specia cells or to modify cell

attributes. Possible values are;
_BYTES
_COLLAPSED
_ DWORDS
_EXPANDED
_Hi DDEN

SHOWN (def aul t)

Return value
None.

Comments

Creates an expandable/collapsible cell for viewing raw data such as data payloads.
Datacan beraw bytes, aninteger, or alist. If aninteger isused, it will beinterpreted
as 4 bytes of data. Specifying BYTES or _ DAORDS inanaddi ti onal _i nfo
field will force datato be interpreted as bytes or quadlets. COLLAPSED,
_EXPANDED, _HI DDENand _ SHOMN are all interpreted the sameisin aregular
AddCel | call.

47

LECROY PETRACER FILE BASED DECODING USER MANUAL

Decoder Primitives

Example

Creates a data cell with 2 dwords (32-bit integers)
of data.

AddDat aCel | (' 0123456789ABCDEF' , _DWORDS) ;

Creates a data cell with 4 bytes. Integer data
values are always interpreted as 32 bits of data.

AddDat aCel | (0x11223344, _BYTES);

The output of the exampleis:

01254567 B9ABCDEF |11 Z2 35 44
2 quadlets‘ﬂ bytes\

Figure 13-2: Example output for AddDat aCel |

AddEvent ()

AddEvent (<Group string> <Value string>)

Par ameter Meaning Default Value Comments
Group string The name of Corresponds to the name of afield that might be
the group encountered while decoding.
Value string A value that Corresponds to afield value that might be
will be encountered while parsing.
associated
with the group
Return value
None.
Comments

Events are used for transaction searching and for transaction summary. This
function is only effective when called during the Pr ocessDat a() phase of
decoding. Event groups and values are stored globally for transaction levels and
new ones are created as they are encountered. Each transaction contains informa-
tion as to which events were associated with it.

Example

AddEvent ("DatalLength", Format("%d",
out . DataLength));

48

LECROY PETRACER FILE BASED DECODING USER MANUAL

Decoder Primitives

AddSepar at or ()

AddSepar at or (<addi tional _i nfo any>, ...)
Par ameter Meaning Default Value Comments
additiona_info any Used to create specia cells or to modify cell

attributes. The values are predefined constants.
Possible values are:

_COLLAPSED

_ EXPANDED

_Hi DDEN

_SHOMWN (defaul t)

Return value
None.

Comments

Creates a separator cell. COLLAPSED, EXPANDED, HI DDEN, and _SHOMN
are al interpreted the sameisin aregular AddCel | call.

Example
AddCel | ("Stuff", "Things");

AddSepar at or adds a space between the previ ous and
subsequent cells.

AddSeparat or () ;
AddCel | ("More stuff", "Mre things");

The output of the exampleis:

‘Things \ More things
t

Separator cell

Figure 13-3: Separator cell
example

Begi nCel | Bl ock()

Begi nCel | Bl ock(<nane string>, <value string>,
<description string or null> <color integer or list>,
<addi tional _info any>)

Par ameter Meaning Default Value Comments

name string Displaysin the namefield of the cell.

49

LECROY PETRACER FILE BASED DECODING USER MANUAL

Decoder Primitives

Par ameter Meaning Default Value Comments
value string Displaysin the value field of the cell.
description string or null Displaysintool tip.
color integer or list If not speci- Color can be specified as either a packed color

fied, adefault valuein an integer, or as an array of RGB values
colorisused ranging from 0-255. Displaysin the namefield
of the cell.

additiona_info any Used to create specia cells or to modify cell
attributes. The values are predefined constants,
and zero or more of them may be used at one
time. Possible values are:
[_BLOCKNAME, x]
_COLLAPSED
_ERROR
_ EXPANDED
[_FI XEDW DTH, w]
_HI DDEN
_MONOCOLOR
_MONCFI ELD
_SHOWN (defaul t)
_WARNI NG

Return value
None.

Comments

Beginsacell block and adds a block header cell. Thisisaspecial cell that can be
collapsed and expanded. The collapsed/expanded state of this cell affects cellsin
the group according to their _ COLLAPSED, EXPANDED attributes. All callsto
AddCel | after acall toBegi nCel | Bl ock() will put the new cellsinto this
group until acall to EndCel | Bl ock is made.

Cell blocks can be nested.

Example

Beginthe "red group. For clarity these cells wl|
be red:

Begi nCel | Bl ock("Red Group", null, null, 0x0000ff,
_MONCFI ELD) ;

This cell will be displayed when the red groupis in
t he expanded st at e:

AddCel | ("Red is", "Expanded"”, null, 0x0000ff,
_ EXPANDED) ;

50

LECROY PETRACER FILE BASED DECODING USER MANUAL

Decoder Primitives

This cell will be displayed when the red group is
col | apsed:

AddCel I ("Red is", "Collapsed”, null, 0x0000ff,
_COLLAPSED) ;

This begins the nested blue group. Nothing in the
bl ue group will be displayed unless the red group is
expanded:

Begi nCel | Bl ock("Blue G oup”, null, null, Oxff0000,
_MONCOFI ELD, _EXPANDED, [_BLOCKNAME, "Bl ockName"]);

This cell is only displayed when the blue group is
vi si bl e and expanded:

AddCel I ("Blue is", "Expanded", null, Oxff0000,
_EXPANDED) ;

This cell is also only displayed when the bl ue group
is visible and expanded:

AddCel | ("Bl ue", "Too", null, Oxff0000, _EXPANDED);

This cell is only displayed when the blue group is
vi si bl e and col | apsed:

AddCel I ("Blue is", "Collapsed", null, O0xff0000,
_COLLAPSED);

This ends the bl ue group.
EndCel | Bl ock();

Cells with the SHOM attribute are al ways
di splayed. This is the default:

AddCel | (" Al ways", "Shown", null, 0x0000ff, _SHOWN);

This cell will never be displayed. In areal script
this would be driven by a vari abl e:

AddCel | ("Never", "Shown", null, 0x0000ff, _H DDEN);
This ends the red group.
EndCel | Bl ock() ;

51

LECROY PETRACER FILE BASED DECODING USER MANUAL

Decoder Primitives

The output of the exampleis:

*

Redis Always
Collapsed | Shown

Figure 13-4: Example output for
Begi nCel | Bl ock with red group
collapsed

Red Group

ed s EBlueis Always
H'ihr'”” _E“JHHrIIIIFI Collapsed | Shown

Figure 13-5: Example output for Begi nCel | Bl ock with red group
expanded and blue group collapsed

edis Bluzis Blue Always

|—-|j I—|[|_|I_j[E|IJ|—- (ETds g
_ Expanded | Too [Shown
Figure 13-6: Example output for Begi nCel | Bl ock with red group expanded

and blue group expanded
Conpl et e()
Conpl et e()
Par ameter Meaning Default Value Comments
Return value

An integer that should be passed back to the application unchanged.

Comments

This should be called when it has been decided that an input context has been
accepted into atransaction, and that the transaction is complete. The return value
of thisfunction should be passed back to the application from the Pr ocessDat a
function. Thisfunction could be used to associate the input context with the output
context.

Example
if (done)
return Conplete();

52

LECROY PETRACER FILE BASED DECODING USER MANUAL

Decoder Primitives

EndCel | Bl ock()
EndCel | Bl ock()

Par ameter Meaning Default Value Comments

Return value
None.

Comments

Ends a cell block that was started with
Begi nCel | Bl ock().

Example
SeeBegi nCel | Bl ock().

GetBitO fset()
GetBit Off set ()

Par ameter Meaning Default Value Comments
N/A

Return value
None.

Comments
Returns the current bit offset that isused in Next NBi t s or PeekNBi t s.

Example
raw = ' FOFQ' ; # 1111000011110000 bi nary

resultl = GetNBits (raw, 2, 4);
result2 = PeekNBits(5);

result3 = NextNBits(2);

Trace ("Ofset =", GtBitOfset());

The example generates this Trace output:
Ofset =D

53

LECROY PETRACER FILE BASED DECODING USER MANUAL

Decoder Primitives

PeekNBi t s()

PeekNBi t s(<bi t _count i nteger>)

Par ameter Meaning Default Value Comments

bit_count integer

Return value
None.

Comments

Readsbi t _count bitsfrom the data source. The difference between

PeekNBi t s and Next NBi t s isthat PeekNBi t s does not advance the global
bit offset. PeekNBI t s can be used to make decisions about how to parse the next
fieldswithout affecting subsequent callsto Next NBi t s. If PeekNBi t s iscalled
without aprior call toGet NBi t s, theresultisundefined. Notethat bitsareindexed
starting at bit 0.

Example

raw = ' FOFO' ; # 1111000011110000 bi nary
resultl GetNBits (raw, 2, 4);

result?2 PeekNBi t s(5);
result3 Next NBi t s(2);

Trace ("resultl =", resultl,
result3 =", result3);

result2 =", result?2,

Thiswill generate this Trace outpult:
resultl = Cresult2 =7 result3 =0

Inthecall toGet NBi t s: starting at bit 2, reads 4 bits (1100), and returnsthe value
OxC.

Inthe call to PeekNBI t s: starting at bit 6, reads 5 bits (00111), and returns the
value 0x7.

Inthe call to Next NBi t s: starting at bit 6, reads 2 bits (00), and returns the value
0x0.

Pendi ng()

Pendi ng()

Par ameter Meaning Default Value Comments

LECROY PETRACER FILE BASED DECODING USER MANUAL

Decoder Primitives

Return value
An integer that should be passed back to the application unchanged.

Comments

This should be called when it has been decided that an input context has been
accepted into atransaction, but that the transaction still requires further input to be
complete. Thisfunction could be used to associate input contexts with the output
context. The return value of this function should be returned to the application in
the Pr ocessDat a function.

Example
if (done)
return Conplete();
el se return Pending();

Rej ect ()

Rej ect ()

Par ameter Meaning Default Value Comments

Return value
An integer that should be passed back to the application unchanged.

Comments

Called when it is decided that the input context does not meet the criteriafor being
apart of the current transaction. The output context should not be modified before
this decision ismade. The return value of this function should be returned by the
Pr ocessDat a function.

Example

if (UnknownVal ue)
return Reject();

55

LECROY PETRACER FILE BASED DECODING USER MANUAL

Decoder Primitives

56

LECROY PETRACER FILE BASED DECODING USER MANUAL

Modules

CHAPTER 14: MODULES

Modules are a collection of functions and global data dedicated to decoding a
certain type of transaction. Each module consists of one primary file (.dec), and
possibly several included files (.inc).

Module Functions

Three functions are used as entry-points into a decoding module. They are called
by the application and are used both in the initial transaction decoding phase, and
each time that a transaction needs to be displayed.

ProcessDat a()

Called repeatedly with input contexts representing transactions of the specified
input types. Decidesif input transaction is a member of this transaction, or if it
beginsanew transaction. Thisfunction will be called first using incompl ete output
transactions. If theinput transaction is not accepted into any of the pending trans-
actions, it will be called with an empty output transaction to seeiif it starts anew
transaction.

Col | ect Dat a()

Called with each input transaction that was previously accepted by the function
Pr ocessDat a. Generatesall output context datathat would be required for input
into a higher level transaction.

Bui | dCel | Li st ()

Called with the output context generated by the call to Col | ect Dat a, and no
input context. Thisfunction isresponsiblefor adding display cellsbased onthe data
collected by Col | ect Dat a.

Note that there is some flexibility in the use of these functions. For example, if itis
easier for a particular protocol to build cellsin Col | ect Dat a, cells could be
generated there, and Bui | dCel | Li st could be left empty. Another approach
would be to have Pr ocessDat a do everything (generate output data, and build
cell lists) and then implement Col | ect Dat a asapass-thruto Pr ocessDat a.
Thiswill be less efficient in the decoding phase but may reduce some repetition of
code. These decisions are dependent on the protocol to be decoded.

57

LECROY PETRACER FILE BASED DECODING USER MANUAL

M odules

Module Data

There are several standard global variables that should be defined in a module

which are queried by the application to figure out what the module is supposed to
do.

Modul eType

Required. A string describing the role of the script. Currently, only
Transacti on Decoder andDat aBl ock Decoder arevalid.

Example
set Modul eType = "Transacti on Decoder";

Transacti on Decoder usesProcessDat a(). Dat aBl ock Decoder
does not.

Qut put Type

Required. A string label describing the output of the script. Example : AVC
Transacti on

Example
set CQutput Type = "AV/ C Transaction”;

| nput Type

Required. A string label describing the input to the script. Input and output types
should be matched by the application in order to decide which modules to invoke
on which contexts.

Example
set | nput Type = "1394 Transaction";

Level Nane
Optional. A string that names this decoder.

Example
set Level Nane = "AV/ C Test Transacti ons";

Decoder Desc
Optional. A string that describes this decoder. Displays as atoolbar icon tool tip.

Example
set DecoderDesc = "View test transacti ons";

58

LECROY PETRACER FILE BASED DECODING USER MANUAL

Modules

| con

Optional. File name of an icon to display on the toolbar. Must be a 19x19 pixel
bitmap file.

Example
set lcon = "bitmp. bmp";

59

LECROY PETRACER FILE BASED DECODING USER MANUAL

M odules

60

LECROY PETRACER FILE BASED DECODING USER MANUAL

How to Contact LeCroy

Typeof Service Contact

Call for technical support... US and Canada: 1(800) 909-2282
Worldwide: 1(408) 727-6600

Fax your questions... Worldwide: 1 (408) 727-6622

Write aletter... LeCroy

Protocol Solutions Group
Customer Support

3385 Scott Blvd.

Santa Clara, CA 95054

USA
Send e-mail... support@CATC.com
Visit LeCroy’sweb site... http://www.lecroy.com/

Limited Hardware Warranty

So long as you or your authorized

representative ("you" or "your"), fully

complete and return the registration card ro
provided with the applicable hardware product

or peripheral hardware products (each a
"Product") within fifteen days of the date of receipt from LeCroy or one of its
authorized representatives, LeCroy warrants that the Product will be free from
defects in materials and workmanship for a period of three years (the "Warranty
Period"). You may also complete your registration form viathe internet by visiting
http://www.lecroy.com/support/register/. The Warranty Period commences on the
earlier of the date of delivery by LeCroy of a Product to acommon carrier for
shipment to you or to LeCroy's authorized representative from whom you purchase
the Product.

What this Warranty Does Not Cover

Thiswarranty does not cover damage due to external causes including accident,
damage during shipment after delivery to a common carrier by LeCroy, abuse,
misuse, problems with electrical power, including power surges and outages,
servicing not authorized by LeCroy, usage or operation not in accordance with
Product instructions, failure to perform required preventive maintenance, software
related problems (whether or not provided by LeCroy), problems caused by use of
accessories, parts or components not supplied by LeCroy, Products that have been
modified or altered by someone other than L eCroy, Productswith missing or altered
service tags or serial numbers, and Products for which LeCroy has not received
payment in full.

61

LECROY PETRACER FILE BASED DECODING USER MANUAL

Coverage During Warranty Period

During the Warranty Period, LeCroy or its authorized representatives will repair or
replace Products, at LeCroy's sole discretion, covered under this limited warranty
that are returned directly to LeCroy's facility or through LeCroy's authorized
representatives.

How to Obtain Warranty Service

To request warranty service, you must complete and return the registration card or
register viathe internet within the fifteen day period described above and report
your covered warranty claim by contacting LeCroy Technical Support or its
authorized representative.

LeCroy Technical Support can be reached at 800-909-7112 or viaemail at
support@catc.com. You may also refer to LeCroy's website at
http://www.lecroy.com for more information on how to contact an authorized
representative in your region. If warranty serviceisrequired, LeCroy or its
authorized representative will issue a Return Material Authorization Number. You
must ship the Product back to LeCroy or itsauthorized representative, initsorigina
or equivalent packaging, prepay shipping charges, and insure the shipment or
accept therisk of loss or damage during shipment. LeCroy must receive the Product
prior to expiration of the Warranty Period for the repair(s) to be covered. LeCroy
or its authorized representative will thereafter ship the repaired or replacement
Product to you freight prepaid by LeCroy if you are located in the continental
United States. Shipments made outside the continental United States will be sent
freight collect.

Please remove any peripheral accessories or parts before you ship the Product.
LeCroy does not accept liability for lost or damaged peripheral accessories, dataor
software.

LeCroy owns all parts removed from Productsit repairs. LeCroy may use new
and/or reconditioned parts, at its sole discretion, made by various manufacturersin
performing warranty repairs. If LeCroy repairs or replaces a Product, the Warranty
Period for the Product is not extended.

If LeCroy evaluates and determines there is "no trouble found" in any Product

returned or that the returned Product is not eligible for warranty coverage, LeCroy
will inform you of its determination. If you thereafter request LeCroy to repair the
Product, such labor and service shall be performed under the terms and conditions

62

LECROY PETRACER FILE BASED DECODING USER MANUAL

of LeCroy'sthen current repair policy. If you chose not to have the Product repaired
by LeCroy, you agree to pay LeCroy for the cost to return the Product to you and
that LeCroy may require payment in advance of shipment.

General Provisions

THISLIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU
MAY HAVE ADDITIONAL RIGHTS THAT VARY BY JURISDICTION.
LECROY'SRESPONSIBILITY FOR DEFECTS IN MATERIALS AND
WORKMANSHIPISLIMITED TO REPAIR AND REPLACEMENT AS SET
FORTH IN THISLIMITED WARRANTY STATEMENT. EXCEPT AS
EXPRESSLY STATED IN THISWARRANTY STATEMENT, LECROY
DISCLAIMSALL EXPRESS AND IMPLIED WARRANTIES FOR ANY
PRODUCT INCLUDING BUT NOT LIMITED TO, ANY IMPLIED
WARRANTIES OF AND CONDITIONS OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, AND ANY WARRANTIES THAT
MAY ARISE FROM ANY COURSE OF DEALING COURSE OF
PERFORMANCE OR TRADE USAGE. SOME JURISDICTIONS MAY NOT
ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS,
SO THE PRECEDING LIMITATION MAY NOT APPLY TO YOU.

LECROY DOES NOT ACCEPT LIABILITY BEYOND THE REMEDIES SET
FORTH IN THISLIMITED WARRANTY STATEMENT OR FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES INCLUDING WITHOUT
LIMITATION, ANY LIABILITY FOR THIRD PARTY CLAIMS AGAINST
YOU FOR DAMAGES, PRODUCTSNOT BEING AVAILABLE FOR USE, OR
FOR LOST DATA OR SOFTWARE. LECROY'SLIABILITY TO YOU MAY
NOT EXCEED THEAMOUNT YOU PAID FOR THE PRODUCT THAT ISTHE
SUBJECT OF A CLAIM. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL
DAMAGES, SO THE PRECEDING EXCLUSION OR LIMITATION MAY NOT
APPLY TO YOU.

The limited warranty on a Product may be transferred for the remaining term if the
then current owner transfers ownership of the Product and notifies LeCroy of the
transfer. You may notify LeCroy of the transfer by writing to Technical Support at
LeCroy, 3385 Scott Blvd., Santa Clara, CA 95054 USA or by email at:
support@catc.com. Please include the transferring owner's name and address, the
name and address of the new owner, the date of transfer, and the Product serial
number.

63

LECROY PETRACER FILE BASED DECODING USER MANUAL

	Table of Contents
	Chapter 1: Introduction
	Features of CATC Scripting Language

	Chapter 2: Values
	Literals
	Integers
	Strings
	Escape Sequences

	Lists
	Raw Bytes
	Null

	Variables
	Global Variables
	Local Variables

	Constants

	Chapter 3: Expressions
	select expression

	Chapter 4: Operators
	Operations
	Operator Precedence and Associativity

	Chapter 5: Comments
	Chapter 6: Keywords
	Chapter 7: Statements
	Expression Statements
	if Statements
	if-else Statements
	while Statements
	for Statements
	return Statements
	Compound Statements

	Chapter 8: Preprocessing
	Chapter 9: Context
	Chapter 10: PETracer Decoder Script Files
	Decoder Script Files
	Cfg.dec
	Input Data Fields
	Output Data Fields

	Io.dec
	Input Data Fields
	Output Data Fields

	Mem.dec
	Input Data Fields
	Output Data Fields

	Msg.dec
	Input Data Fields
	Output Data Fields

	Chapter 11: Functions
	Chapter 12: Primitives
	Call()
	Format()
	Format Conversion Characters

	GetNBits()
	NextNBits()
	Resolve()
	Trace()

	Chapter 13: Decoder Primitives
	Abort()
	AddCell()
	AddDataCell()
	AddEvent()
	AddSeparator()
	BeginCellBlock()
	Complete()
	EndCellBlock()
	GetBitOffset()
	PeekNBits()
	Pending()
	Reject()

	Chapter 14: Modules
	Module Functions
	ProcessData()
	CollectData()
	BuildCellList()

	Module Data
	ModuleType
	OutputType
	InputType
	LevelName
	DecoderDesc
	Icon

